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a b s t r a c t

The forcing efficiency for the first and the second baroclinic modes
by the wind stress in tropical oceans has been discussed by calcu-
lating equivalent forcing depth from annual mean, seasonal, and
pentadal density profiles of the observational data. In the annual
mean field, the first mode is forced preferentially in the western
Pacific and the Indian Ocean, whereas the second mode is more
strongly excited in the Atlantic and the eastern Pacific. This differ-
ence is mostly due to the pycnocline depth; the second mode is
more dominantly forced where the pycnocline depth is shallower.
We also revealed large seasonal variations of the second mode’s
equivalent forcing depth in the western Indian Ocean. The first
mode is more dominantly forced during boreal spring and fall in
the western Indian Ocean, while the second mode becomes more
dominantly forced during boreal summer and winter. Those are
due to seasonal variations of both the zonal wind and the pycno-
cline depth. Moreover, we show that the excitation of the second
mode in the western Pacific increases after the late 1970s, which is
associated with the decreasing trend of the zonal pycnocline gradi-
ent. Revealing the variation of the equivalent forcing depth will be
useful for understanding the oceanic response to winds in tropical
oceans and the improvement in the predictability of air-sea coupled
climate variability in the tropics.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The oceanic response to winds is crucial in understanding variations of the ocean circulation
(Stommel, 1948). In particular, it is important to understand which vertical mode is excited most

∗ Corresponding author. Current address: Geophysical Fluid Dynamics Laboratory/NOAA, US Route 1, Princeton University
Forrestal Campus, Princeton, NJ 08542, USA. Tel.: +1 609 452 6511.

E-mail address: Takeshi.Doi@noaa.gov (T. Doi).

0377-0265/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.dynatmoce.2010.03.001

dx.doi.org/10.1016/j.dynatmoce.2010.03.001
http://www.sciencedirect.com/science/journal/03770265
http://www.elsevier.com/locate/dynatmoce
mailto:Takeshi.Doi@noaa.gov
dx.doi.org/10.1016/j.dynatmoce.2010.03.001


416 T. Doi et al. / Dynamics of Atmospheres and Oceans 50 (2010) 415–423

efficiently by winds (Veronis and Stommel, 1956). Interannual and decadal variations of the relative
importance among vertical modes are also crucial for the predictability of the El Niño-Southern Oscil-
lation (ENSO) in the Pacific (Timmermann et al., 1999; Moon et al., 2004). Since coastal Kelvin waves
originated in the tropical oceans have a potential impact on the oceanic condition of coastal regions
(e.g. Sprintall et al., 2000; Li and Clarke, 2004; Florenchie et al., 2003; Iskandar et al., 2005), understand-
ing which vertical modes are dominantly forced by winds will be useful for improving predictability of
climate variations from intraseasonal to decadal time scale in both tropical and coastal regions along
eastern boundaries.

Relative importance among vertical modes has been discussed in the previous literature. Evi-
dence of the first baroclinic mode as the most efficiently forced mode in the equatorial Pacific is
quite abundant (Wunsch and Gill, 1976). However, Dewitte et al. (1999), using a high-resolution
ocean general circulation model (OGCM) simulation, showed that the contribution of the second
baroclinic mode is larger in the eastern equatorial Pacific. At least two baroclinic modes are nec-
essary to model successfully the equatorial thermocline depth, zonal current, and SST anomalies in
both central and eastern equatorial Pacific (Giese and Harrison, 1990; Shu and Clarke, 2002). In the
Atlantic, the second mode is dominantly forced at seasonal timescales (Du Penhoat and Treguier,
1985). This is consistent with the phase speed estimated from the sea surface height (SSH) anoma-
lies observed by the TOPEX/Poseidon and ERS1/2 altimeters (Schouten et al., 2005). Also, Illig et al.
(2004) revealed that the most energetic mode is the second mode at interannual timescales. These
second baroclinic oceanic waves also can influence the interannual variation of the Angola Dome in
the southeastern tropical Atlantic, as shown in Doi et al. (2007) by use of high-resolution OGCM out-
puts. In the equatorial Indian Ocean, there is a disagreement among past studies. Gent et al. (1983)
showed the dominance of the second baroclinic mode. In contrast, Iskandar et al. (2005) recently
have shown that the eastward propagation of intraseasonal Kelvin waves in the eastern equatorial
Indian Ocean is explained by the first baroclinic mode with the phase speed of about 2.9 m s−1. The
latter study is in good agreement with the observation of Sprintall et al. (2000) for semiannual Kelvin
waves.

We have used the equivalent forcing depths (Gill, 1982) to investigate baroclinic response of the
ocean to wind forcing. The equivalent forcing depths are sometimes referred to as projection coeffi-
cients or wind-coupling coefficients, and are different from the ordinary equivalent depth (Appendix
A). Although the concept of equivalent forcing depth is very interesting, unfortunately it has not been a
familiar one and has not been discussed comprehensively in tropical oceans at least in our knowledge.
Therefore, as a first step, we calculated the equivalent forcing depth in tropical oceans from the obser-
vational data and investigated its annual mean, seasonal variation, and pentadal variation in each basin.
Although either basin-wide resonance (Cane and Moore, 1981) or local resonance (Yamagata, 1987)
may affect the relative importance among the excited vertical modes for time-dependent forcing, we
here concentrate on the oceanic response to the local-wind forcing.

2. Annual mean

Using the mean density profile from the World Ocean Atlas 2001 (WOA01;
http://www.nodc.noaa.gov), we calculated equivalent forcing depths for n-th vertical mode
(Dn) by:

Dn =
Hmix

∫ 0
−H

A2
n(z)dz∫ 0

−Hmix
An(z)dz

, (1)

where An(z) is the vertical structure function, H is the bottom depth, and Hmix is the mixed-layer depth
(Appendix A). We note that the wind stress can efficiently excite the n-th vertical mode if Dn is small.
Hereafter we particularly focus our attention on the first two gravest modes. Fig. 1a shows the value
of D1/(D1 + D2) in the global equatorial ocean. In the area where the value is above 0.5, the second
mode is more dominantly forced by the wind stress than the first mode. The second mode is more
dominantly forced in the whole equatorial Atlantic, as shown in the previous works (Du Penhoat and
Treguier, 1985; Illig et al., 2004). Interestingly, the dominantly forced mode changes within the Pacific;

http://www.nodc.noaa.gov/
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Fig. 1. (a) Value of D1/(D1 + D2) along the equator (solid line). The dash lines show the averages in each basin. Value above 0.5
means that the second mode is forced more dominantly by winds than the first mode. (b) Values of D1 (thin line) and D2 (thick
line) (in m). (c) Pycnocline depth, which is defined by a depth of 1024.5 kg m−3, from the WOA01 (solid line) and the estimation
by Eq. (2) (dash line) (in m). (d) Zonal wind stress along the equator from the QSCAT wind data (in N m−2).

the first mode is more dominantly forced in the western and central Pacific while the second mode
is more dominantly forced in the eastern Pacific. Therefore, we need to pay attention not only to first
baroclinic modes, but also second baroclinic modes for understanding the oceanic variation in the
equatorial Pacific, as discussed by Giese and Harrison, 1990; Shu and Clarke, 2002. The present results,
however, are different from that of Fukumori et al. (1998), who compared the relative magnitude of
two baroclinic modes using an OGCM. They showed that the first mode is more efficiently forced in
the whole equatorial Pacific. This discrepancy maybe due to the coarse vertical resolution (only three
points above pycnocline depth in their model) and thus an unrealistic diffused pycnocline, which
favors the excitation of the first mode. As the value of D1/(D1 + D2) in the western and central Indian
Ocean is close to 0.5, both the first and the second vertical modes are almost equally forced there, but
the first mode becomes more dominantly forced to the east. It is consistent with Iskandar et al. (2005),
who showed that the first baroclinic Kelvin waves play important roles on the intraseasonal variation
in the eastern equatorial Indian Ocean by use of high-resolution OGCM outputs.

The zonal variation of D1/(D1 + D2) depends strongly on the variation of D2 more than that of D1,
as shown in Fig. 1b. The variance of D2 is 2.5 times larger than that of D1. The variation of D2 can be
explained mostly by the zonal variation of depths of 1024.5 kg m−3 potential density surface (Fig. 1c),
which lies near centers of pycnocline. The correlation coefficient between the zonal distribution of
D2 and that of pycnocline depth is higher than 0.9. Assuming a simple shallow-water model, the
pycnocline depth is simply estimated by zonally integrating the mean zonal winds stress from the
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Fig. 2. (a) Seasonal march in the value of D1/(D1 + D2) along the equator. Values above 0.5 are shaded. Contour interval is 0.05.
(b) Seasonal deviations of D1 from the annual mean (in m). Negative values are shaded, and Contour interval is 20 m. (c) As
in (b), but for D2. (d) Seasonal deviations of pycnocline depth from the annual mean (in m). Negative values are shaded, and
contour interval is 10 m.

eastern boundary:

h(x) = Heast + 1
�0Hupperg′

∫ x

x′=east

Tx
surf(x

′)dx′, (2)

where h is the pycnocline depth, �0 is the reference density, Hupper is upper layer depth, Heast is upper
layer depth at the eastern boundary, g′ is the reduced gravity acceleration, and Tx

surf is zonal wind
stress. We used the QSCAT wind data (Kubota et al., 2002) for zonal wind stress and estimated the
pycnocline depth (Fig. 1d). It is in good agreement with the estimation from the WOA01 (Fig. 1c). The
differences of the basin size and zonal wind stress seem to be important factors for the difference
of the pycnocline depth. If we focus on the zonal mean values of D1/(D1 + D2) averaged over each
basin (Fig. 1a), the second mode is more efficiently forced in the Atlantic, while the first mode is more
dominantly forced in both the Pacific and the Indian Oceans. This is also explained by the difference
of the pycnocline depth estimated by Eq. (2) averaged over each basin. The difference between the
Atlantic and the Pacific is remarkable. Since the zonal wind stress averaged over each basin does not
have so big differences between the Atlantic and the Pacific, the zonal basin size must be crucial for
the difference of equivalent forcing depth.

3. Seasonal variation

Fig. 2a shows seasonal variations of D1/(D1 + D2) calculated from the monthly climatology of the
WOA01 data. Although the dominantly forced mode remains the same throughout the year over the
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most part, the western Indian Ocean shows annual march conspicuously. The first mode is more
dominantly forced during boreal spring and fall in the western Indian Ocean, while the second mode
becomes more dominantly forced during boreal summer and winter. This seasonal variation is mainly
due to the seasonal variation of D2 associated with the seasonal variation of the pycnocline depth
(Fig. 2b–d), as similar to annual mean feature in the previous section. Because the pycnocline depth
is deeper during boreal spring and fall in the western Indian Ocean, D2 becomes larger and thus the
excitation of the second mode becomes weaker there.

Therefore, the season when the baroclinic Kelvin wave is forced by winds is important to discuss
the oceanic response especially in the equatorial Indian Ocean. This may also explain the disagreement
between the present study and Gent et al. (1983). They showed that the second vertical mode is most
strongly excited throughout the year for the whole equatorial Indian Ocean, using the density profile
observed at 53◦E during May and June. As is clear from Fig. 2a, the second mode is more strongly forced
at 53◦E during May and June. Furthermore, the phase speed of the semiannual Kelvin wave during the
monsoon transition periods of April and October is comparable with that of the first baroclinic mode
(Sprintall et al., 2000). This is again consistent with our result that the first mode is forced dominantly
during these seasons.

4. Pentadal variation

Fig. 3a shows the pentadal variation of D1/(D1 + D2) calculated from the pentadal anomaly data
of the WOA01 (e.g. Levitus et al., 2005; Boyer et al., 2005). Although this dataset would be suffered
from lack of systematic ocean measurements, we believe that calculating the long-term variation of the
equivalent forcing depth by use of this dataset is worthwhile as a first step. The order of relative impor-
tance of excitation remains the same throughout the past 40 years over the most part, except for the
western Indian Ocean. In this area, the most dominantly forced mode can be changed between the first
mode and the second mode. The first mode is dominantly forced during 1960–1968 and 1981–1985,
while the second mode is dominantly forced during 1955–1959, 1969–1980 and 1986–present aver-
aged over 57◦–60◦E. We need to be careful in discussing the oceanic response to winds in this area.
This pentadal variation is expected to affect on climate variation in the equatorial Indian Ocean.

Focusing on D2, the pentadal variation in the western Pacific is rather large compared to the other
oceans (Fig. 3b). D2 in the western Pacific decrease after the late 1970s, which is reliable above 99%
significance level based on Mann–Kendall rank statistic and t-test, and D2 in the late 1990s is 300 m
smaller than the late 1970s. This means that the excitation of second mode in the western Pacific
increase after the late 1970s. This result seems to be very important for understanding the changed
amplitude and period of ENSO after the late 1970s (Moon et al., 2004), as the remote forcing by
changes in wind stress in the western Pacific are important in pycnocline depth in the eastern Pacific
(Busalacchi and O’Brien, 1981). The pentadal variation of D2 can be also explained by the pycnocline
depth (Fig. 3c). The pycnocline in the western Pacific becomes shallower and that in the eastern Pacific
becomes deeper after the late 1970s. This can be explained by the weakness of the trade wind in the
Pacific after the late 1970s (Fig. 3d), as shown in Vecchi et al. (2006). This is consistent with the Inter-
government Panel on Climate Change (IPCC) report of Cubasch et al. (2001), who concluded that the
future mean Pacific climate base state could more resemble an El Niño-like state, i.e. a slackened west
to east SST gradient associated with the eastward shift of precipitaion. Our result supports the previous
works (Shu and Clarke, 2002; Moon et al., 2004), but our new viewpoint is to discuss those from the
equivalent forcing depth calculated using the observational data, not an assimilation data nor a model
output.

5. Summary

We have discussed relative importance of the first and the second baroclinic oceanic response to
winds in the three tropical oceans from a viewpoint of equivalent forcing depth calculated by use of
the WOA01 dataset. In the annual mean, the first mode is forced preferentially in the western Pacific
and the Indian Ocean, whereas the second mode is forced in the Atlantic and the eastern Pacific. The
difference is mostly due to the pycnocline depth; the second mode is more efficiently forced where
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Fig. 3. (a) Pentadal march in the value of D1/(D1 + D2) along the equator. Values above 0.5 are shaded. Contour interval is 0.05.
(b) Pentadal deviations of D2 from the annual mean (in m). Negative values are shown by shading, and Contour interval is
100 m. (c) Pentadal deviations of pycnocline depth from the annual mean (in m). Negative values are shown by shading, and
contour interval is 10 m. (d) Pentadal deviations of zonal wind stress (in N m−2) from the annual mean by use of the NCEP/NCAR
reanalysis data (Kalney et al., 1996). Westerly wind anomalies are shown by shading, and contour interval is 0.01 N m−2.

the pycnocline is shallower. This pycnocline depth is explained using the balance between horizontal
pressure gradient and zonal wind stress.

Large seasonal variations of D2 are revealed in the western Indian Ocean. The first mode is more
dominantly forced during boreal spring and fall in the western Indian Ocean, while the second mode
becomes more dominantly forced during boreal summer and winter. Therefore, we need to be careful
in discussing the oceanic response to winds in this area. Also, pentadal variation of D2 in the western
Pacific is large compared to the other basin; the excitation of second mode in the western Pacific
increase after the late 1970s. It may be associated with the decreasing trend of the zonal pycnocline
gradient or the mixed-layer depth. Further studies using assimilation datasets or model outputs are
necessary to investigate the trend in the excitation efficiency of the second modes relative to the first
modes more deeply and this actual influence on the climate mode in the Pacific.
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Appendix A. Equivalent forcing depth

The linear equations including the wind forcing term are:

∂u

∂t
− f v = −�−1

0
∂P

∂x
+ �−1

0
∂Xx

∂z
(A1)

∂v
∂t

+ fu = −�−1
0

∂P

∂y
+ �−1

0
∂Xy

∂z
(A2)

∂P

∂z
= −�′g (A3)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (A4)

∂�′

∂t
+ w

∂�̄

∂z
= 0, (A5)

where u, v, and w are the zonal, meridional, and vertical velocity, respectively, P and �′ are the pressure
and potential density perturbation from a mean state �̄, g is the acceleration due to gravity, �0 is the
reference density, f is the Coriolis parameter, Xx and Xy are the zonal and meridional wind forcing
term, respectively. Eqs. (A3) and (A5) reduce to

1
�0

∂2P

∂t∂z
= −N2w (A6)

N2 = − g

�0

∂�̄

∂z
, (A7)

where N is the Brunt–Väisälä frequency, which is calculated from the vertical profile of potential
density of the WOA01 data in a central difference scheme. The horizontal velocity and the pressure
are then written as:

(u, v, p) =
∞∑

n=0

(ũn(x, y, t), ṽn(x, y, t), p̃n(x, y, t))An(z). (A8)

Using the continuity equation:

∂w

∂z
= −∂u

∂x
− ∂v

∂y
=

∞∑
n=0

w̃n(x, y, t)An(z), (A9)

the vertical velocity is written as:

w =
∞∑

n=0

w̃n(x, y, t)Sn(z),
∂Sn(z)

∂z
= An(z), (A10)

where Sn is the vertical structure functions of vertical velocity. Substituting (A8) and (A10) into (A6),
we obtain

d

dz

(
1

N2

dAn

dz

)
+ 1

C2
n

An = 0. (A11)

The vertical structure function An(z) is a solution of an eigenvalue problem of Eq. (A11) with boundary

conditions:
∫ 0

−H
An dz = 0. Here, H is the bottom depth, and the eigenvalue Cn is the phase speed for

the mode n. The An forms a set of orthogonal functions and are normalized by An(0) = 1 for all n. We
can solve this eigenvalue problem numerically from the vertical density profile.

In the same manner of Eq. (A8), the wind forcing term can be written as:

�0
−1

(
∂Xx

∂z

)
= �0

−1
∞∑

n=0

(�̃x
n(x, y, t)An(z)). (A12)
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Multiplying both sides by An(z) and integrating over the whole depth using orthogonality property,
we obtain

�̃x
n

∫ 0

−H

A2
n

�0
dz =

∫ 0

−H

1
�0

∂Xx

∂z
Andz. (A13)

Here, we assume a linear variation of wind stress over the mixed-layer thickness Hmix, which is
calculated as the depth at which the potential density becomes 0.125 kg m−3 larger than the surface
density in this study. Then, Eq. (A13) simplifies to

�̃x
n

∫ 0

−H

A2
n(z)
�0

dz = Xx
surf

Hmix

∫ 0

−Hmix

An(z)
�0

dz, (A14)

where Xx
surf is zonal wind stress on surface. Therefore, we have

Dn =
Hmix

∫ 0
−H

A2
n(z)dz∫ 0

−Hmix
An(z)dz

(A15)

(�̃x
n, �̃y

n) = (Xx
surf, Xy

surf)

Dn
, (A16)

where Dn is called a equivalent forcing depth (Gill, 1982). Wind stress excites efficiently the vertical
mode for which the equivalent forcing depth is small. An equivalent forcing depth should not be
confused with an ordinary equivalent depth, the latter is related to the baroclinic wave speed (Wunsch
and Gill, 1976). Also, we note that equivalent forcing depths are sometimes calculated simply by∫ 0

−H
A2

n(z) dz without the actual value of the mixed-layer depth (e.g. Du Penhoat and Treguier, 1985),

because Hmix/
∫ 0

−Hmix
An(z) dz is almost unity under the condition that An(0) = 1 for all n. We calculated

Dn also by using this simplified formula and confirmed almost the same results.
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